Surrounded Regions

题目

130. Surrounded Regions

难度中等282

Given a 2D board containing 'X' and 'O' (the letter O), capture all regions surrounded by 'X'.

A region is captured by flipping all 'O's into 'X's in that surrounded region.

Example:

X X X X
X O O X
X X O X
X O X X

After running your function, the board should be:

X X X X
X X X X
X X X X
X O X X

Explanation:

Surrounded regions shouldn’t be on the border, which means that any 'O' on the border of the board are not flipped to 'X'. Any 'O' that is not on the border and it is not connected to an 'O' on the border will be flipped to 'X'. Two cells are connected if they are adjacent cells connected horizontally or vertically.

解答

这题思路不难,应该是一道典型的DFS 算法的题目,dfs 算法就是写起来麻烦,想起之前面试时写 dfs 真的写到怀疑人生……

思路就是:除了和四条边上的 O 相连的 O,其余的都直接变为 X。所以对四条边上的 O 进行 dfs 遍历,把与之相连的全部标记或直接修改为其他符号比如 .。最后在遍历整个数组,. 的就修改为 O,其余变为 X

代码如下:

class Solution {
public:
    void dfs(vector<vector<char>>& board, int x, int y){
        board[x][y] = '.';
        for(int i=0;i<4;i++){
            int xx = x + dx[i];
            int yy = y + dy[i];
            if(xx >=0 && yy >=0 && xx <m && yy <n && board[xx][yy] == 'O'){
                dfs(board,xx,yy);
            }
        }
    }
    void solve(vector<vector<char>>& board) {
        m =board.size();
        if(m<=0) return;
        n = board[0].size();
        if(n<=0) return;
        for(int i=0;i<m;++i){
            if(board[i][0] == 'O'){
                dfs(board,i,0);
            }
            if(board[i][n-1] == 'O'){
                dfs(board,i,n-1);
            }
        }
        for(int i=0;i<n;++i){
            if(board[0][i] == 'O'){
                dfs(board,0,i);
            }
            if(board[m-1][i] == 'O'){
                dfs(board,m-1,i);
            }
        }
        for(int i=0;i<m;++i){
            for(int j=0;j<n;++j){
                if(board[i][j] == '.') board[i][j] = 'O';
                else board[i][j] = 'X';
            }
        }
    }
    int dx[4] = {0,0,-1,1};
    int dy[4] = {-1,1,0,0};
    int m;
    int n;
};