CC BY 4.0 (除特别声明或转载文章外)
如果这篇博客帮助到你,可以请我喝一杯咖啡~
题目
5489. Magnetic Force Between Two Balls
难度中等13
In universe Earth C-137, Rick discovered a special form of magnetic force between two balls if they are put in his new invented basket. Rick has n
empty baskets, the ith
basket is at position[i]
, Morty has m
balls and needs to distribute the balls into the baskets such that the minimum magnetic force between any two balls is maximum.
Rick stated that magnetic force between two different balls at positions x
and y
is |x - y|
.
Given the integer array position
and the integer m
. Return the required force.
Constraints:
n == position.length 2 <= n <= 10^5 1 <= position[i] <= 10^9 All integers in position are distinct. 2 <= m <= position.length
解法
这道题是用二分的方法来解决。因为此题是求一个最大的间隔,可以使用二分的方法来求解。首先是确定上下界:毫无疑问,下界为1。那么上界呢?假设坐标 position 从小到大排序,最小的坐标为 minP, 最大坐标为 maxP,m 个球的情况下,那么最大距离必然小于等于$(maxP-minP)/(m-1)$。所以上下界是确定了。那么如果给定了一个间距 x,怎样能判断该 x 是否满足条件呢?这其实可以直接采用贪心的思想,直接遍历排序后的 postion,记录距离大于 x 的个数,如果大于等于 m,那么这个 x 必然是可以的。
代码如下:
class Solution {
public:
bool check(vector<int>& position, int dist,int m){
int cnt = 1;
int l = position[0];
for(int i=1;i<position.size();++i){
if(position[i] - l >= dist){
cnt++;
if(cnt >= m) return true;
l = position[i];
}
}
return cnt >= m;
}
int maxDistance(vector<int>& position, int m) {
sort(position.begin(),position.end());
int down = 1;
int up = (position.back() - position[0])/(m-1);
int ans = 0;
while(down <= up){
int mid = down + (up-down)/2;
if(check(position,mid,m)){
ans = mid;
down = mid+1;
}else{
up = mid-1;
}
}
return ans;
}
};